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An internal guidance system determines the position and orientation of a 
moving object from the readings of mass accelerometers, gyroscoplc pickups 
of absolute angular velocity, and from specified initial condltlons[l and 2J. 

If the components of an inertial system have instrument errors and the 
lnltlal conditions are not given exactly, the coordinates and orientation of 
the object will be determined inaccurately. The dependence of that lnaccu- 
racy on the lnatrument errors and on the inexactness of the Mtlal condl- 
tlona 1s described by the error equations [2] which comprlee two grOUDf3 of 
differential equations and some algebraic relations. 

BeLow, the error equations will be integrated for an object In Keplerlan 
motion. 

1. We will introduce a right-handed system of rectangular coordinates 

O,~QC with origin at the center of the Earth and axe8 invariant relative 

to directions f om the center of the Earth to the fixed stars. 

In this system of coordinates, the error equations of 

system have the form [2] 

an Inertial guidance 

x dAm 
dt P.1) 

where c Is the radius vector from the centgr of the Rarth 0, to the point 

0 of the object ln which are located the senaltlve masse8 of the accelero- 

meters of the guidance system, br Is the change of this radius vector, p 

la the product of the gravitational constant and the ma88 of the Earth, 8, 

1s the error ln orientation of the gyroscope platform of the inertial system, 

An are the instrument error of the accelerometer8 and &m those of the 

absolute angular velocity meters, and br, 1s the total error ln the coordl- 

nates of the object aa determlned by the lnertlal aystem. 
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280 V.D. Andreev 

If It is assumed that point 0 is the center of mass of the object, its 

radius vector r appearing in Equation (1.1) will satisfy Equation 

d2r 

dta + r8 
.E=() (1.2) 

The major difficulty In the Integration of system (1.1) is the first equa- 

tion. When the object Is in Keplerian motion, the corresponding homogeneous 
equation can be transformed into the form 

6 (d; + S) = 0 (l-3) 
i.e. It turns out to be the variation of Equation (1.2) for Keplerian motion. 

The general Integral of Equation (1.2) containing six arbitrary constants Is 

known. On the basis of a well-known theorem of Poincare [3], particular 

solutions of the homogeneous equation (1.1) are obtained by differentiating 

the general Integral of Equation (1.2) with respect to the arbitrary con- 

stants, thus enabling one to integrate the first equation in (1.1). In this 

way Lur’e [4] has integrated the vector equation for the free fall of a par- 

ticle In the cabin of a satellite; this equation dlfferes from the first 

equation In (1.1) only In the right-hand side. 

We will Introduce a trihedron O1{‘n’C’ with the O,<‘q’ plane coinciding 

with the plane of the object orbit. The direction of the O,c’-axis In the 

normal to the orbit is such that, when looking from the end of this axis, 

the object moves counterclockwise. The Keplerian motion (elliptical) of the 

object In the plane of the orbit Is determined [5] by Formulas 

M_-= ,, (t _ t,) + M,,, v = p.‘&-‘JT, E - e sin E = M 
(4 -4) 

r = a (1 -e cos M), tm l/,v = v/(1 + e) / (1 - e) - ‘/&, (J = v + o 

O3 J, (W 
sinE=% 2 k- sin&$f 

k=l 

where a Is the semlmajor axis, e is the eccentricity of the orbit, it , 

E and v are, respectively, the mean, eccentric, and true anomalies, \J 

Is the mean angular velocity of the motion, u Is the angle between the 

tLaxls and the radius-vector r , UI Is the angle between the s’-axis and 

the direction of perigee, t, Is the time of passage through perigee, and 

J, are Bessel functions. 

Formulas (1.4) depend on four arbitrary constants: to, e, a and U1. 

The two remalnlng constants must be Included In the determination of the 

orientation of the orbital plane relatlve to the coordinate system O,{nC . 

The relative position of the trlhedrona 015qC and O,c’n’C’ can be stlpu- 

lated by the table of direction cosines: 
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5 

Now 

- 

- 
4 I n’ 

cos 3 0 

sin a sin 3 cos Cf. 
-cosasin3 sin2 

r = ES i- rlr) + 

- 

I - 
sin p 

-sinrcos? 
cos z cos p 

g = P cos c cos /3, q = r (00s 0 sin a sin p + sin (5 cos a) 

(4.5) 

(14 
6 = r (- cos 0 cos a sin p + sh u sin a) 

where E,q,L are the base vectors along the axes. 

Formulas (1.4) and (1.6) furnish the general Integral of Equation (1.2) 

depending on the arbitrary constants t,, e, a, 0, a, p. There is no loss of 

generality in assuming that 

t, = 0, a=p=o, 0 = u (0) = 0 (4.7) 

In order to simplify the following notation. 

We will form the following linear combinations [4] of the derivatives of 

the radius-vector r determined by Equations (1.4), (1.6) 

th 1 ar 
91 = a7;-1 

1 ih 
-- 

% = a & ) q3 = - ae (I_ e”) aa 

v/1 ar 
-- - 

flev 

1 ar 1 ar 
q4=,,,, 

I ar q, =: - -- 
a ap’ q,= -yjg 

at0 
(14 

where the constants are arbitrary. 

By pi we will denote the total derivative with respect to 

al . It Is obvious that the vectors qi and p, form a system 

solutions of Equation (1.2). 

time of vector 

of particular 

We will now introduce the orbital trlhedron xyr whose z-axis Is directed 

along r and whose y-axis coincides with 0,s’ . Then, the components q, 

and pi In this reference frame will be used to form the matrices A and B 

whose elements are 

Ali = qi*Xy A2i = qi*Z, Aa< = pi*X, A,i = Pi-Z (i = 1,2,3,4) 

B,i = Qi+d*Yc Bsi = Pi+40 Y (i = 1,2) (1.9) 

where x, y, z are the unit vectors along the respective axes. 

When calculating the elements of matrices A and B , It Is necessary to 

bear In mind the relations 

dqi dx 
Pi==, dt=-wuZt 

dy o dz --= 9 dt dt = qix 

(1.10) 
- a2 

o,=v’-Yp? -e2F, 
a (1 - e2) dr vea sin 0 

r= -zz 
l+ecosv’ dt l/i=7 
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Projecting Equation (1.1) onto the orbital trlhedron axes, we arrive at 

two systems of scalar differential equations 

x1 l _ - - %X1 + X8, x2* = oyx1 + x4 (21=&r, zs =6y) 

a!** = - 0$4 - pxl I P + An, - 2Am,r’ - Am,‘r (1.11) 

Go = o,x, + 2px2 I r3 + An, + 2rq,Am, 

XI* = X8, 2** = - px6 I P f An,, + 2 Am../ f Am,‘r - o,Am,r 

(za = 6z) (1.12) 

The elements of matrices A and B constitute a system of linearly lnde- 

Pendent particular solutibns of the homogeneous systems (1.11) and (1.12), 

since the determinants of matrices A. and B are the Wronsklans of these 

systems [4] and are nonzero 

JAJ=-vv2,pq=V~i-f?@ 

The general solution of the homogeneous system (1:ll) and (1.12)-can now 

be represented In the form 

xi= J$ Af,Cj (i=1,2,3,4), 
J=l 

xi = ,&C,+i G=59 6) (1.13) 

Then the solution of the nonhomogeneous equation can be determined by the 

method of variation of parameters. By introducing the matrices D - A-' , 

0 - 8" and changing back from xi, xp, x, to 6x,- by, Bz, we arrive at the 

following expressions for the components 6x, by, 62, of vector 8r In the 

orbital trlhedron: 

6x = gIAa [i [(Ah - 2Amg’ - Am,‘r) & f 
0 

+ (Anl + 2rq&n,,) 0~1 dt i- i D,“q”] (1.14) 
j+ 

6~ = i Asf [i [(A& - 2Amg’ - Am,‘r)& + 
f=I 0 

+ (An= + 2rq,Am,) Dul dt + &D~j’~j’] 

6y = $.B,f [f (AT+, + 2Am,r’ + Am,‘r - o,Am,r) Gt,dt + i Glj”Zy+4] 
f=l 0 j=l 

The elements of matrices A, B and D, G appearing In (1.14) have been 

calculated In c41 

On account of (1.7), they assume the form 
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(1.15) 

AI1 = -3vt u+e cm 0) 
2Jfl-c ' 

A 
13 

= 2+rcosv sin v 
1+scosv 

* 
13 

= 2+scosv 
~+ecosv~~~~, Al*=+ 

A,l _ r 3vtssin v 
2 JfI=T’ 

As9 = - cos v, Aas = sin v, As4 = 0 
a 

B,, = f cm v, BI, = $sin v 

D13 = 

2 (1 + c cos a) 

v1/1 ’ 

D,3 = V-T=S a+2cosv+acos~v 
V 1 +acosv 

D33=$ 
[ 
- ,~e,,"v (2+ecosv)sinv +& (l+ecosv)e 1 

D,3 = -!- 
2+scosv 

3vt 
V [ -esin ’ ~/~(~++cosv) + (I---.+)a 

(1 + e cos v)] 

&, = 
2e sin v 

VW_ 
Dz4 = m sin v 

V 

Dsr = L 
[ 
13vt easin v - 

v l-ea 
i~e~~v(2e-cosv-ecosv)] 

D 42 = - : (f3’& i e sin ’ + 
ecosv+kcokPv-2 
JfTF? (1+ 6 co9 0) 3 

GIa = - ;Ecf;v; , 
G _ y--cosv 

** - v(i+ecosv) 

For CP, co+, we obtain Expressions 

Cio := i Dijo$, 
j=l 

Ci+, = $ Gijox’i+d 
j=l 

The quantities Dt3”, Di,,O, G12’, Ggzo can be found from 

(1.16) 

(1.15), if it Is 
assumed In the latter that t = 0 and v = 0. 
Gil0 C43 are equal to 

The quantities Dil”p Di20, 

Dll’ = Dal0 = 0, Dslo = 1, Dal0 = - (1 - S)-“’ 

DFdO = 2 / (1 - e”), Dzao = (1 + e) / (1 - e), Ds2’ = Deao = 0 

G ’ 11 = 1 / (1 + e), Gz10 = 0 (1.17) 

In (1.16) we have, In accordance with (l.ll), (1.12) and (l.lo), 

Xl0 = 6x0, x20 = &To, .lTso = 6x"' + v (1 - t?y%w 

xqo = 6Z”’ - V (1 - $)-“’ 6x4, xi0 = 6y”, q” = 6y”* (1.18) 
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where 6x0, 6y”, 6z”, 6x0’, hy”‘, 6z”’ are the initial values of the variables 

in question. 

When e =O , i.e. for a circular orbit 

r = a, r’ = 0, v = o(), u = co& 
I 

and Formulas (1.14) reduce to those found In 

2. The solution of the second equation in 

0 u = 00, Q-h/ - '-0 

[61. 

(1.1) Is obvious: 

1 

0, = 
s 
* Amdt +- 0,’ 

0 

Projecting on the xya-axes, It assumes [7] the form 

ZZ 

-sina .‘(- A 
w 

m, sin (5 + Am, cos (T) dt + Olzo ] $ 

0 

t coso 
LS 

:(A m, cos (5 -1 Am, sin IS) dt + Al.yC 

I 
0 

t 

= coso is * (- Am, sin CT + Am, cos a) dt + f31ro ] + 
0 

t sino 
[S 

‘(A m, cos 0 i- Am, sin o) dt + else 
1 

0 

(2.1) 

(2.2) 

Formulas (2.2) determine the r.rors (of' orientation relative to the ~n,c- 

trlhedron. The errors of orlentatic,l relative to the orbital trihedron can 

be found from Equation 

8, = r-‘6y, 0, = -1.-9x, 8, = 01, (2.3) 

where 6x and 6y are given by (1.14). 

3. In Sections 1 and 2 we obtained the solutions for 6X, 69, 6Z, elr, elv, 

8 by quadratures. For orbits with small eccentricity and constant values 

of" Ansr An,, An,, Am,., Am,, Am, one can easily obtain the first terms 

of the power series expansions In e for the solutions of the first and 

second equations In (1.1). 

To Lhe first order of accuracy in e It follows from the last equation 

in (1.4) that 

sin E = sin vt (1 + e cos vt), cos E = cos vt - e sina vt (3.1) 

and from the fifth and sixth equations in (1.10) with the aid of (1.7) we 

obtain 
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r=a(l -eccosvt), 0, 7 v (1 + 2e cos vi), Q = u = vt -+ 2c sin vl 

sin Q = sin 2, = sin vt + e sin 2vt, cos 6 = co3 v = cos vt - 2e s1n2 v1 

Relations (3.1), (3.2) lead to the follcwing expressions for the elements 
of the first two rows of matlx .J and the last two columns of matrix D : 

All = - 3/2vt (1 + e cos vt), A12 = 2 sin vt + 31.2~ sin 2vt 

AIS = 2 cos vt - e (1 + 3 sin2 vt), A14 = 1 - e CTOS vt 

A21 = 1 - e (cos vt + 3izvt sin vt), A22 = - cos vt + 2e sinzvt 

AZ, z sin vt + e sin 2vt. AM=O 

D19=2v-1(1 fecosut), DIG = 2ev-l sin vt 

D23 = v-l (2 cos vt - 3e sin2 vt), &=v-l(sin V t + e sin 2 V t) 

(3.3) 

OS = v-1 I-- 2 sin vt i e (3vt - 3/2 sin Zwt)] 

D,, = v-l [COS Vt + e (cos Vt - 3 - sina vt)], 

Da = v-l [3Vt + e (3vt cos Vt - 2 sin vt)] 

D && = v-1 [- 2 + 3e (vt sin vt f cos vt)) 

Similarly 

B1, = COS Vt - e (1 + sin2 vt), B,, = sin vt + l/2 e sin 2vt 
(3.4) 

Gl2 = - v + (sin vt + llae sin 2vt), C.2, = V-l [COS Vt - e (1 + sir.3 vt) ] 

Let us substitute (3.3), (3.4) and (1.19) together with the initial values 

{$ a,“t d O of the elements of matrices D and G in Formulas (1.14). When 

!’ 
An,, Am%, 

sl%pli ications, 
Amy, Amz are constant we obtain, after integration and 

the following expressions for 6x, bu, 6~ : 

62 = 6X0 * V%C (4 sin Vt - 3vt) + 66.2” (sin vt - vt) + 2~-~6z~’ (cos vt - 1) + 

+ v+ ATE~ [ -V2(vt)* + 4 (1 - cos vt)] f 4 v -1 A a mu (sin vt - vt) f 2vS2 An, (sin vt - Vt) + 

+ e [AR,v-~ (- s/2vzt2 cos it - 5vt sin vt + cos vt - 1 + 6 sir12 vt) + 

+ An,v-2 (- 3vt - 5vt cos vt + iI2 sin vt + b/2 sin 2vt - lf2sin vt CoS 2vt) + 

+ 2Ampv-1 (- 6vt - 6v.t cos vt + 15f2 sin vt _t 51, sin 2vt - 1/Z sin vt ~0s 2vt) -1 

-/- 6X0*(1 - COS Vt) - 3VT16xo’(Vt + Vt COSVt - sin 2Vt) - 382’ (5vt -+ 2vt cos vt - 

- 3/2 sin 2vt - 4 sin vt) + vm16zo' (1 + co3 vt - 2 cos vt) 

6y = vW2 (An, - av Am,) (i - COS Vt) + 6y.O COS Vt $ v-h5y”sin vf -+ 

+ e [vF2 An, (1 - cos vt f sin2 vt - s/2vt sin vt) +, v-$zAm, (cos vt - 1 - sin2 vt + 

-t_ it sin vt) -+ v-h AmX (vt cos vt - sin vt) + 6~” (cos vt - 1 - sin2 vt) + 

t; V%y” (- sin vt -j- sin vt cos vt)] (3.5) 

SZ = 2~’ (6x’ + aAmy) (1 - cos it) + 62’ (4 - 3 cos vt) + V-VI.? sin vt + 

-+ 2~-~An, (vt - sin vt) + vd2An, (1 - cos vt) + e [An,@ (- 3/2vV sin vt - 
- l/,vt cos vt + Q/2 sin vt - 2 sin 2vt) + An,+ (- Tf2vt sin vt + 3 sin2 vt - 

- 2 - 2 cos vt - 1/z sin2 vt cos vt) + 2a Amvv -l (- 4vt sin vt + 4 - 21/a cos vt t_ 

+ 3 sin2 vt + b/b cos vt cos 2vt) + 2v-%x0’ (1 - cos vt - S/2vt sin vt) + 

+ 62” (- 6vt sin vt + 10 - 10 cos vt + 6 sin2 vt) + v-lbz”*(sin 2vt - 2 sin vt)] 
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Similarly, from (2.2) 

0, = elxo cos vt - elzo sinvt _b v_lAm, sinvt -v-l-Am, (1 - msvt) f 

+ e I- 28,,’ sina vt - eIzosin 2vt + v-‘Am, (vt + Va sin 2vt) - l/,v-lAm,(1 - ~0s 2vt)] 

f&, = f&,’ + Am,t (3.6) 

e,, = elxo an vt + el,o COS Vt $_ V-’ Am, (i - cos W) $ v-1 Am, sin vt + 

+ e ielxo sin 2vt - 2@,,’ sina Vt -I- ‘lsv-’ Amr (1 - cos 2vt) + v-l Am,(vt + ljz sin m)] 

When e = 0 , I.e. for a circular orblt, relations (3.5) and (3.6) reduce 
to those obtained for this case In C61. 

From the last two equations ln (1.1) we find the components of vector br, 
of the total error of determination of coordinates In the ~rys reference 
frame 

6x8 = 6x + Qr, 6y, = 6y - eIJcr, 62, = 62 (3.7) 

and from (2.3) the error of orientation of the object relative te the orbital 
trlhedron. 

4. The preceding consideration was related to a self-contained Inertial 

system with three mass accelerometers. Now we can consider the case where 

the Inertial system also makes use of signals from an external source on the 

magnitude r of the distance of the object from the Earth's center. Two 

different methods of using this additional Information are of Interest [2]. 

In the first of these methods all three mass accelerometers are retained 

In the system, but the term u/r 3 In the equations for the unperturbed opera- 

tion contains r which Is supplied by the additional source of Information. 

As far as the error equations are concerned, this variant differs from that 

considered in Sections 1 to 3 In that the first equation in (1.1) assumes the 

where Ar now denotes the error In the value of p transmitted to the Iner- 

tial system. 

In the second method, only two mass accelerometers are used In the system. 

The value of r transmitted to the system can be used to eliminate one of 

the variables from the equations for the unperturbed operation. If, In the 

unperturbed state, the trlhedron of the inertial system, along which are 

situated the mass accelerometers, coincides with the orbital trihedron XV.?, 

then the system will be without the mass accelerometer nr along the z-axis. 

Thus, the three second order scalar equations corresponding to the first 

equation ln (1.1) will reduce to two obtained by projecting onto the X- and 

y-axes (4.2) 

6x” + (iL f-P - cov2) 6x = An, - BArn,r - Am,‘r- toy* Ar - 2q,Ar’ 

by” + (p I P) 6y = An, + 2Am,r’ + Am=‘r - oyAm,r 

The homogeneous equations corresponding to (4.1) and (4.2) have variable 

coefficients, as was the case with Equation (1.1). On the other hand, con- 

trary to Equation (l.l), Equations (4.1) and (4.2) will not be the equations 



for the variations of the Keplerian motion (1.2). Thus, POinCar6’S theorem 

can not be employed In order to search for the solutions of Equations (4.1) 

and (4.2). Nevertheless, the general solution of these equations can be 

constructed. 

Let us consider Equations (4.2). The second equation coincides with sys- 

tem (1.12). The last formula In (1.14) and the second formula (3.5) will be 

Its solution. 

In order to construct the solution of the first equation, we note that 

6s = r I a, 62 = 0 Is one of the particular solutions of system (1.11). 
Comparing the first equation in (4.2) with the projection on the x-axis of 

the first equation In (l.l), we come to the conclusion that 

6x = rla (4.3) 
will be a particular solution of the homogeneous equation (4.2), as can be 

verified by direct substitution. 

In order to find the second particular solution, we can now make use of 

the Ostrogradskli-Liouvllle formula, which yields 

(4.4) 

From the fifth equation in (1.10) we have a2 / Ts = V' / (Yvl - e"). On 

account of this relation, (4.4) assumes the form 

The solutions (4.3) and (4.5) are linearly independent. The Wronsklan of 

these solutions is equal to unity. Thus, the general solution of the homo- 

geneous equation corresponding to the first one In (4.2) has the form 

6x= c1’+c2 Y-.- 
a av vi - ep 

(4.6) 

The general solution of the nonhomogeneous equation can now be obtained 

by varying the parameters C, and C, . By virtue of the Initial conditions 

(1.18), this solution Is found In the form 
t 

6x = $ [- I_ \ rv (Anx.- 2Amvr’ - Am,‘r - a’& - 
. av l/i-&+ o (4.7) 

- 2q,Ar') dt + &] + av ,,b [+\ r (An% - 2Am,r’ - 
0 

- Am,‘r - ov ‘Ar - 2o,Ar’) dt + (1 - e) 6s”’ 1 
is 
to 

When the instrument errors are constant and the eccentricity of the orbit 
small, we obtain from (4.7) the following approximate formulas analogous 
those in (3.5): 
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6r = l/aAn,t2 $ 6~’ + 6d” t f e [ An,v-’ 2 (- v? cos vt + 2vt sin vt f 3 cos vt - 3) + 

+ 2~1 (a Am, - v Ar) (sin vt - vt) + 6x” (1 - cos vt) + V-~&P (2 sin vt - vt --- vt cos vt)] 

(4.8) 

When e = 0 , Formula (4.8) reduces to that obtained In [6: for this case. 

(4.:;; 

A more complicated problem Is posed by the Integration of Equation 

Its projection onto the xya-axes leads to the system 

hx** + (p / r3 - ~2) 6s + o,,’ 6z + 20~62 = An, - 2Am,r' - Am,‘r 

(5.1) 
az** + (p / r3 - 0~2) 6~ - 0,*6x - 20,6x’ = Anz + 2ro,Am, + 3kAr / P 

and to Equation 

6~” + pr36y = An,, + 2Am,r’ + Amx’r - coyAmp (5.2) 

Equation (5.2) coincides with the second equation in (4.2), and the prob- 

lem thus reduces to that of solving (5.1). 

The homogeneous system of equations (5.1) has two particular solutions 

6x = r/a, 62 = 0, 6x = 0, 6z= rla (5.3) 

This enables one to reduce It to second order by msklng the change of 

variables 

(5.4) 

The equations for P and p have the form 

p’ + 2 $ p + 20,q = 0, q*.+2$q-22o,p = 0 (5.5) 

Introducing the complex variable ~1 = p + tq , we are led to a first-order 

equation for u 
= 0 (5.6) 

which can be directly integrated. The general solution of this equation is 

given by the function 
u = -$ (cos 2v + i sin 2v) (5.7) 

where C is a complex constant. 

Changing back agaln to the variables 6x, 62 and thereby making use of 

(4.6), we obtain the following two particular solutions of system (5.1) : 

6x = 5 sin 2v, 62 = $cos 2v 

6x = -$ co9 2v, 6z=$sin2v (5.8) 

Expressions (5.8) and (5.3) constitute a system of four particular solu- 

tlons of Equations (5.1).(*) (Please find Footnote on opposite page). 

Now we will construct a matrix a from the particular solutions (5.3) and 

(5.8) and their derivatives, the latter being related by virtue of the fifth 

and seventh equations in (1.10). 

The elements of matrix c are 
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r 
a 11=,, a - 0, 12 - al3 = + sin 221, CL14 = $cos zc (5.9) 

a - 0, 
21 - 

a22 = G, a22 = - $-~0s 2v, az4 = $-sin 2u 

a s1 = V& sin v, aa = J$$ sin v sin 2v + 
2av 1/l - f+ 

cos 2u 
r 

as2 = 0, q4 = V& sin v cos 2v - 
%av VI - ez 

sin 2v r 

cCPl = 0, CC43 = - 
JL& 

sin vcos 2v + 
2nv 1/l - e” 

sin 2 L: 

r 

a 42 = V& sin v ad4 = 1/& sin v sin 2v + ~~ 
2av 1/l -e2 coS 2v 

r 

The determinant of this matrix Is the Wronskian of the obtained system of 

particular solutions. 

If we reduce the homogeneous system (5.1) to the Cauchy form, the matrix 

of the right-hand sides will not coiltain diagonal elements, as was the case 

with Equations (1.11). Therefore, It follows from the well-known theorem of 

Ostrogradskii-Llouville that the Wronskian Is constant;. It suffices to cal- 

culate its value at t=O. Since then u = 0 , It immediately follows from 

(5.9) that Ia 1 = 4v2 (1 - e”) # 0. 

Thus, the above particular solutions of the homogeneous systemof equations 

(5.1) are linearly Independent; the general solution of the homogeneous system 

*) The particular solutions (5.3) of Equations (5.1) have been found by 
first comparing systems (5.1) and (1.11) and then selecting from the parti- 
cular solutions of the latter. While reviewing the manuscript of this paper, 
Llir’e pointed out a direct method of obtaining the general solution of the 
homogeneous vector equation (4.1). 

From (1.2) and the homogeneous equations (4.1) it follows that 

r” X 6r + 6r” X r = (r’ >< 6r + 6r’ X r)’ = 0 
r’x 6r+6r’ X r=a (a is a constant vector) 

where the dots now indicate total time derivatives. Whence one finds 

br’r2 - 6rr . r’ = rfir’ . r -1 r X a - r’r . Sr (1) 
Moreover, from (1.2) and (4.1) 

r . 6r” - r” . 6r = 0, r . 6r’ - r” . 6r = c = cord 

Substitution Into (1) yields (note that r. r’ = rr’) 

6ir2 - Grrr’ = 6r X (r x r ) + cr _I- r X a 

But r x i= r‘%‘y., Therefore, we arrive at Equation 

6r’ - 6rr’/ r + v’y X 6r = (cr + r X a) / r2 

which is equivalent to Equations 

(62’ + i&z’) - (r’ / f - 2iv’) (62 + i&r) = (c - ia,) / r , 6y’-66yr’/r=ax/r 

Integration yields 

6z + i&z = (cl + ic2) ree2’v + (c - ia,) / 2ir2v’, 6y=cg -/-axvJrv 

The solution so obtained contains all six parameters (c, a,, ax, CI, CL. C3). 
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will be 
4 

6z = x c&c,* (5.10) 
i=l 

The general solution of the nonhomogeneous system will be found by the 

method of variation of parameters. Assuming that the C, are time dependent, 

they will be determined by Equations 

The 

i Cr’ (t) agi = An, - 2Am,r’ - Am,‘r 
i=l 

&C,’ (t) a,( = An, + 2rAm@,, + 3p $ 

dementS Of the matrix 8 = a-1 are found to be 

p ," 
11=-, 

QIZ = esinv 

2 (1 - ea) ’ 
1319 = 0, PI&=-L- !-._ 

a 2v VI--e2 

Paz = p, Pa4 = 0 

(5.11) 

IL = - 
esinv cos2v e sin v sin 2v 

2 (1 _ $) 9 P32 = - 2(1 __ea) I P33 = $2v g& 

P34 = +2v Y&, P41 = e;;iv~;2;v, 
p42 = - ,,,,' 

e sin v cos 2v 

(5.12) 

With the aid of matrix f~ , the expressions for C,(t) can be obtained in 

the form 

C, (t) = i Ipi, (An= - 2Am,r’ - Amv’r) + (5.13) 

0 

+ pi4 (Anz + 2rq,Am, + 3pAr I rS)l dt + Ci” 

ITI order to obtain the solution of Equations (5.1), one must now substl- 

tUte (5.13) into (5.101, after having determined the C,o in agreement with 

the Initial conditions. This yields 

6x = fi a,i 

t 

1s 
[Pt, (An% - 2Am,r’ - Am,‘r) + (5.14) 

i=l 0 

+ j3t4 (An, $- 2rq,Am, -I- 3pAr / 911 dt + Go 
> 

62 = i U,i [pi3 (An, - 2Am,r’ - Am,‘r) + 
i=l 

+ f& (An= + 2ro,Am, + 3pAr / r3)l dt + Ci” 
1 
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where 

When the orbit eccentricity is small, 
lowing first order expressions 

(3.2) can be used to give the fol- 

a11 = 1 - e cos vt, a12 = 0, ala = sin 2Vt + e sin vt (3 cos 2vt - i) 
a,, = cos 2vt - e (3 sin vt sin 2vt + cos vt), a31 = 0 

a -1 a1 - - e cosvt, . %a = - Cps 2vt + e (3 sin vt sin 2vvt + co9 vt) 

- 1) 
fir3 = 0, &t = _Y,,J-l”;“i “k,,e, ;;,vt ;t*c: ;:: (i -ecosvt), fill=0 

&$e = i/ev-1 [cos 2vt - e (3 sin vt sin 2vt f co9 vt)] (5.16) 

ps4 = 1/gv-1 [sin 2vt + e sin vt (3 co9 2vt - I)] 

13hs = - Vgvml [sin 2vt + e sin vt (3 cos 2vt - i)] 
- V,v-1 [cos 2vt - e (3 sin vt sin 2vt + cos vt)] 

Cl” = (1 -/- e) kg - l/p~-l (1 - e) 6z”*. C,O = (1 + e) 6s0 f; l/,y-1 (i _ e) (3~~ 
Csp = l/3VS1 (1 - e) 6z0’, C,O = ‘/Zv-1 (1 - e) ijZ* 

If it 13 assumed that the instrument errors are constant, substitution of 
(5.16) into (5.14) and integration leads to the following expressions for 63: 
and 13s: 

s az = llrv4Anx (1 - cos 2vt) d_ (i/,v-* An, + 3/r Ar) (sin 2vt - 24 + 

-j 6x’ d_ l/,v-%h?sin Zvt + l/9v-16z” (cos 2vt - 1) + e [‘/,v-a An, (- I/, cos vt + 

+ 2 co9 2vt - s/, cos 3vt) $ I/$ v-aAnZ (vt cos vt f s/r sin vt - 2 sin 2vt + a/, sin 3vt) + 

-t_ 6/g% Amu (- 2 sin vt f sin 2vt) + Ar (Vavt cos vt - 3g/e sin vt + g/e sin 3vt) + 

+6xQ (1 - cos vt) + 1/gv-16zp (1 - cos 2vt - 3 sin vt sin 2vt) + 

-j; 1/8v-16zQ’ (- sin vt - sin 2vt f 3 sin Vt CO9 Zvt)] 

6Z = ‘/rv-2An, (2vt - sin 2vt) + (l/rv-aAn, + S/rAr) (1 - cos 2vt) f 62’ + 

+ l/.p-%rO’ (1 - cos 2vt) + l/a~-16z”‘sin 2vt + e [l/svTa An, (- vt cos vt - */, sin vt f 

+ 2 sin 2*lt - e/, sin 3vt) + l/,v-2 An, (- 5/* cos vt $- 2 cos 2vt - */, cos 3vt) Q 

+ v-la Am, (- 1 + 6f3 cos vt - 5/e cos 2vt + V6 cos 3vt) + aleAr (cos vt - cos 3vt) + 

+ 8z9 (1 - cos vt) + l/av%SzQ’ (- 1 + cos 2vt + 3 sin vt sin 2vt) + 

+ 1/av-16z0’ (- sin 2vt - sin vt + 3 sin vt cos 2vt)) 

‘he author is grateful to A.I.Lur’e for reading the manuscript and for 

useful suggestions. 
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